可穿戴行走虛擬現(xiàn)實(shí)系統(tǒng)由津發(fā)科技自主研發(fā)的ErgoLAB虛擬世界人機(jī)環(huán)境同步平臺(tái)、美國(guó)WorldViz頭戴式行走虛擬現(xiàn)實(shí)系統(tǒng)等核心部件組成,人機(jī)環(huán)境同步平臺(tái)由虛擬現(xiàn)實(shí)同步模塊、可穿戴生理記錄模塊、VR眼動(dòng)追蹤模塊、可穿戴腦電測(cè)量模塊、交互行為觀(guān)察模塊、生物力學(xué)測(cè)量模塊、環(huán)境測(cè)量模塊等組成。實(shí)現(xiàn)在進(jìn)行人機(jī)環(huán)境或者人類(lèi)心理行為研究時(shí)結(jié)合虛擬現(xiàn)實(shí)技術(shù),基于三維虛擬現(xiàn)實(shí)環(huán)境變化的情況下實(shí)時(shí)同步采集人-機(jī)-環(huán)境定量數(shù)據(jù)(包括如眼動(dòng)、腦波、呼吸、心律、脈搏、皮電、皮溫、心電、肌電、肢體動(dòng)作、關(guān)節(jié)角度、人體壓力、拉力、握力、捏力、振動(dòng)、噪聲、光照、大氣壓力、溫濕度等物理環(huán)境數(shù)據(jù))并進(jìn)行分析評(píng)價(jià),所獲取的定量結(jié)果為科學(xué)研究做客觀(guān)數(shù)據(jù)支撐。
可穿戴行走虛擬現(xiàn)實(shí)系統(tǒng)是一套沉浸感更強(qiáng)、交互體驗(yàn)更佳的*浸入式虛擬現(xiàn)實(shí)解決方案。它最大的特點(diǎn)就是系統(tǒng)部署簡(jiǎn)單便捷,極大的提高了虛擬現(xiàn)實(shí)應(yīng)用的靈活性。用小巧輕便的頭盔取代傳統(tǒng)的大屏顯示,不再局限于用戶(hù)場(chǎng)地的大小,擺脫外界環(huán)境的束縛??纱┐魈摂M現(xiàn)實(shí)頭盔(Head Mount Display,簡(jiǎn)稱(chēng)HMD)是一種頭戴式虛擬現(xiàn)實(shí)顯示設(shè)備。通過(guò)頭部佩戴的方式,全l方位覆蓋體驗(yàn)者視角,營(yíng)造出更加身臨其境的沉浸效果。同時(shí),輔以6自由度的頭部位置跟蹤和全身動(dòng)作捕捉設(shè)備,通過(guò)對(duì)體驗(yàn)者視點(diǎn)位置的捕捉,使頭盔顯示內(nèi)容進(jìn)行相應(yīng)的改變,應(yīng)用于單人及多人協(xié)同體驗(yàn)中,提升交互感和體驗(yàn)感。使用者佩戴上虛擬現(xiàn)實(shí)頭盔,全角度覆蓋體驗(yàn)視角,使虛擬和現(xiàn)實(shí)的界限融為一體。
作為該套系統(tǒng)方案的核心數(shù)據(jù)同步采集與分析平臺(tái),ErgoLAB人機(jī)環(huán)境同步平臺(tái)不僅支持虛擬現(xiàn)實(shí)環(huán)境,也支持基于真實(shí)世界的戶(hù)外現(xiàn)場(chǎng)研究、以及基于實(shí)驗(yàn)室基礎(chǔ)研究的實(shí)驗(yàn)室研究,可以在任意的實(shí)驗(yàn)環(huán)境下采集多元數(shù)據(jù)并進(jìn)行定量評(píng)價(jià)。(人機(jī)環(huán)境同步平臺(tái)含虛擬現(xiàn)實(shí)同步模塊、可穿戴生理記錄模塊、虛擬現(xiàn)實(shí)眼動(dòng)追蹤模塊、可穿戴腦電測(cè)量模塊、交互行為觀(guān)察模塊、生物力學(xué)測(cè)量模塊、環(huán)境測(cè)量模塊等組成)
作為該套系統(tǒng)方案的核心虛擬現(xiàn)實(shí)軟件引擎,WorldViz不僅支持虛擬現(xiàn)實(shí)頭盔,還可為用戶(hù)提供優(yōu)質(zhì)的應(yīng)用內(nèi)容。結(jié)合行走運(yùn)動(dòng)追蹤系統(tǒng)、虛擬人機(jī)交互系統(tǒng),使用者最終完成與虛擬場(chǎng)景及內(nèi)容的互動(dòng)交互操作。
應(yīng)用領(lǐng)域
BIM環(huán)境行為研究虛擬仿真實(shí)驗(yàn)室解決方案:建筑感性設(shè)計(jì)、環(huán)境行為、室內(nèi)設(shè)計(jì)、人居環(huán)境研究等;
交互設(shè)計(jì)虛擬仿真實(shí)驗(yàn)室解決方案:虛擬規(guī)劃、虛擬設(shè)計(jì)、虛擬裝配、虛擬評(píng)審、虛擬訓(xùn)練、設(shè)備狀態(tài)可視化等;
國(guó)防武l器裝備人機(jī)環(huán)境虛擬仿真實(shí)驗(yàn)室解決方案:武l器裝備人機(jī)環(huán)境系統(tǒng)工程研究以及軍事心理學(xué)應(yīng)用,軍事訓(xùn)練、軍事教育、作戰(zhàn)指揮、武l器研制與開(kāi)發(fā)等;
用戶(hù)體驗(yàn)與可用性研究虛擬仿真實(shí)驗(yàn)室方案:游戲體驗(yàn)、體驗(yàn)類(lèi)運(yùn)動(dòng)項(xiàng)目、影視類(lèi)娛樂(lè)、多人參與的娛樂(lè)項(xiàng)目。
虛擬購(gòu)物消費(fèi)行為研究實(shí)驗(yàn)室方案
安全人機(jī)與不安全行為虛擬仿真實(shí)驗(yàn)室方案
駕駛行為虛擬仿真實(shí)驗(yàn)室方案
人因工程與作業(yè)研究虛擬仿真實(shí)驗(yàn)室方案
其用戶(hù)遍布各個(gè)應(yīng)用領(lǐng)域,包括教育和心理、培訓(xùn)、建筑設(shè)計(jì)、軍事航天、醫(yī)療、娛樂(lè)、圖形建模等。同時(shí)該產(chǎn)品在認(rèn)知相關(guān)的科研領(lǐng)域更具競(jìng)爭(zhēng)力,在歐美和國(guó)內(nèi)高等學(xué)府和研究機(jī)構(gòu)擁有五百個(gè)以上用。
1)、加州大學(xué)圣巴巴拉分校虛擬環(huán)境與行為研究中心
該實(shí)驗(yàn)室主要致力于心理認(rèn)知相關(guān)的科學(xué)研究,包括社會(huì)心理學(xué)、視覺(jué)、空間認(rèn)知等,并有大量論文在國(guó)際知l名刊物發(fā)表,具體詳見(jiàn)論文列表。
2)、邁阿密大學(xué)心理與計(jì)算機(jī)科學(xué)實(shí)驗(yàn)室
研究領(lǐng)域:空間認(rèn)知
Human Spatial Cognition In his research Professor David Waller investigates how people learn and mentally represent spatial information about their environment. Wearing a head-mounted display and carrying a laptop-based dual pipe image generator in a backpack, users can wirelessly walk through extremely large computer generated virtual environments.
Research Project Examples Specificity of Spatial Memories When people learn about the locations of objects in a scene, what information gets represented in memory? For example, do people only remember what they saw, or do they commit more abstract information to memory? In two projects, we address these questions by examining how well people recognize perspectives of a scene that are similar but not identical to the views that they have learned. In a third project, we examine the reference frames that are used to code spatial information in memory. In a fourth project, we investigate whether the biases that people have in their memory for pictures also occur when they remember three-dimensional scenes.
Nonvisual Egocentric Spatial Updating When we walk through the environment, we realize that the objects we pass do not cease to exist just because they are out of sight (e.g. behind us). We stay oriented in this way because we spatially update (i.e., keep track of changes in our position and orientation relative to the environment.)
3)、加拿大滑鐵盧大學(xué)心理系
設(shè)備: WorldViz Vizard 3D software toolkit, WorldViz PPT H8 optical inertial hybrid wide-area tracking system, NVIS nVisor SX head-mounted display, Arrington Eye Tracker
研究領(lǐng)域:行為科學(xué)
Professor Colin Ellard about his research: I am interested in how the organization and appearance of natural and built spaces affects movement, wayfinding, emotion and physiology. My approach to these questions is strongly multidisciplinary and is informed by collaborations with architects, artists, planners, and health professionals. Current studies include investigations of the psychology of residential design, wayfinding at the urban scale, restorative effects of exposure to natural settings, and comparative studies of defensive responses. My research methods include both field investigations and studies of human behavior in immersive virtual environments.
部分發(fā)表論文: Colin Ellard (2009). Where am I? Why we can find our way to the Moon but get lost in the mall. Toronto: Harper Collins Canada.
Journal Articles: Colin Ellard and Lori Wagar (2008). Plasticity of the association between visual space and action space in a blind-walking task. Perception, 37(7), 1044-1053.
Colin Ellard and Meghan Eller (2009). Spatial cognition in the gerbil: Computing optimal escape routes from visual threats. Animal Cognition, 12(2), 333-345.
Posters: Kevin Barton and Colin Ellard (2009). Finding your way: The influence of global spatial intelligibility and field-of-view on a wayfinding task. Poster session presented at the 9th annual meeting of the Vision Sciences Society, Naples, FL. (Link To Poster)
Brian Garrison and Colin Ellard (2009). The connection effect in the disconnect between peripersonal and extrapersonal space. Poster session presented at the 9th annual meeting of the Vision Sciences Society, Naples, FL. (Link To Poster)
4)、美國(guó)斯坦福大學(xué)信息學(xué)院虛擬人交互實(shí)驗(yàn)室
設(shè)備: WorldViz Vizard 3D software toolkit, WorldViz PPT X8 optical inertial hybrid wide-area tracking system, NVIS nVisor SX head-mounted display, Complete Characters avatar package
The mission of the Virtual Human Interaction Lab is to understand the dynamics and implications of interactions among people in immersive virtual reality simulations (VR), and other forms of human digital representations in media, communication systems, and games. Researchers in the lab are most concerned with understanding the social interaction that occurs within the confines of VR, and the majority of our work is centered on using empirical, behavioral science methodologies to explore people as they interact in these digital worlds. However, oftentimes it is necessary to develop new gesture tracking systems, three-dimensional modeling techniques, or agent-behavior algorithms in order to answer these basic social questions. Consequently, we also engage in research geared towards developing new ways to produce these VR simulations.
Our research programs tend to fall under one of three larger questions:
1. What new social issues arise from the use of immersive VR communication systems?
2. How can VR be used as a basic research tool to study the nuances of face-to-face interaction?
3. How can VR be applied to improve everyday life, such as legal practices, and communications systems.
5)、加州大學(xué)圣迭戈分校神經(jīng)科學(xué)實(shí)驗(yàn)室
設(shè)備: WorldViz Vizard 3D software toolkit, WorldViz PPT X8 optical inertial hybrid wide-area tracking system, NVIS nVisor SX head-mounted display
The long-range objective of the laboratory is to better understand the neural bases of human sensorimotor control and learning. Our approach is to analyze normal motor control and learning processes, and the nature of the breakdown in those processes in patients with selective failure of specific sensory or motor systems of the brain. Toward this end, we have developed novel methods of imaging and graphic analysis of spatiotemporal patterns inherent in digital records of movement trajectories. We monitor movements of the limbs, body, head, and eyes, both in real environments and in 3D multimodal, immersive virtual environments, and recently have added synchronous recording of high-definition EEG. One domain of our studies is Parkinson's disease. Our studies have been dissecting out those elements of sensorimotor processing which may be most impaired in Parkinsonism, and those elements that may most crucially depend upon basal ganglia function and cannot be compensated for by other brain systems. Since skilled movement and learning may be considered opposite sides of the same coin, we also are investigating learning in Parkinson’s disease: how Parkinson’s patients learn to adapt their movements in altered sensorimotor environments; how their eye-hand coordination changes over the course of learning sequences; and how their neural dynamics are altered when learning to make decisions based on reward. Finally, we are examining the ability of drug versus deep brain stimulation therapies to ameliorate deficits in these functions.